CRITICAL I/O APPLICATION NOTE

XGE 10GDb Ethernet

UDP Direct Transfer Protocol

Abstract

Critical I/O’s UDP Direct stream transfer protocol is a highly efficient
method of moving block UDP data over standard 10 GbE networks,
using a completely standard UDP protocol. UDP Direct allows very
large blocks of UDP payload data to be sent and/or received directly
to/from a user’s applications level buffers that can be located
anywhere in PCle address space, including buffers that may be located
on separate cards such as FPGA cards, DSP cards, GPU cards, and
others, with no host CPU data copies. Full 10 GbE line rate data
transfer is easily achieved, with very low host CPU loading

CRITICAL

© 2014 Critical I/0, LLC All Rights Reserved Revised 7/18/2014




Critical /O XGE Ethernet UDP Direct Transfer Protocol

Critical I/O’s UDP Direct transfer protocol and XGE NIC hardware provide a highly efficient method of moving
block UDP data over standard 10GbE networks, using completely standard UDP as the on-the-wire protocol.
With a typical i7 CPU hosting the CIO UDP Direct driver, full 10GbE line rate sends and receives can be achieved
using less a 5% loading of one CPU core.

GPU Board FPGA Board Sensor Board CPU Board Headers
and
m Host CPU Control

- 10 GbE
Network

Memory Memory Memory

Payload
PCle Data

UDP Payload Data

The UDP Direct stream mode of operation can be used concurrently with general purpose 10GbE netwok
traffic using the normal network stack. The XGE NIC hardware, firmware, and driver software support
simultaneous usage for UDP direct stream transfers and standard networking.

As implied by the name, at UDP Direct mode applies to UDP traffic streams only. A “UDP stream” is defined as
a flow of data (a series of UDP datagrams) transferred between two UDP “endpoints”, where each endpoint is
defined by IP address and UDP port. For example, a connection between [192.168.5.1: 1005] and
[192.168.5:1025] would be a stream. (IP addresses and UDP ports can also be wildcards).

The XGE NIC chip hardware and firmware inside, along with the Critical I/O UDP Direct driver, have the ability
to “steer” incoming UDP traffic to a specific set of receive buffers associated only with that specific stream,
and also have the ability to strip off the various Ethernet/IP/UDP packet headers prior to writing the payload
data into those buffers. The set of receive buffers can be located anywhere in PCle address space, such as
memory within an external GPU or FPGA card. This is very significant because data will be deposited by the
XGE NIC hardware right where it is needed, with no host CPU data copies and no network stack overhead.

As an example, a user could define a 1 MB buffer located within an external GPU memory. A single call to the
ClO driver is made to associate this “big” buffer with a specific stream. The driver and NIC firmware will divide
the 1MB buffer into individual datagram buffers that are right size to receive the payload portion of the
incoming datagram stream. Only when the 1MB buffer is completely filled with incoming datagrams (or it
times out) will the XGE NIC generate an interrupt which will then result in the driver providing a user RX
completion notification. Only a single driver call is needed to set up to receive the 1MB of data directly into
GPU memory, and then provide the completion to the user application when all of the data has been
received. Furthermore, the packet headers have been stripped off which results in the payload data being
packed contiguously into memory.

The stream receive capability is quite flexible with respect to the number and size of buffers that can be
gueued, and the receive driver API calls can be blocking or asynchronous.

© 2014 Critical /0, LLC All Rights Reserved Revised 7/18/2014




UDP Direct provides an equivalent “stream send” capability that functions nearly identically to the receive
capability. For stream sends, the user defines a buffer anywhere in PCle address space of arbitrary size. A
single call to the CIO driver will result in the driver and NIC firmware initiating a send of the full buffer, with the
NIC automatically breaking the buffer up into as many identically sized UDP datagrams as are needed to send
the full user buffer. A single completion notification is generated when the full buffer has been sent.

Note that while the other side of the interface can also be using the stream mode, it does not have to. It can
also just send (or receive) data via standard socket calls, provided the datagrams are the correct size.

There are several restrictions that must be observed. For receive data to be packed contiguously in the user’s
“big” receive buffer, the sender must send datagrams of consistent size, and the datagram size must match the
size that is defined on the receive side. Fragmented datagrams are not supported for either sends or receives.
In the typical case where the user defines the operation for both the send side and receive sides of the
interface these restrictions do not present a limitation.

UDP Direct API

The UDP Direct API provides the user application interface to send and receive streams of UDP datagrams. The
functions available within this APl are:

xel_init - Initialize the user level library
xel_end - Cleanup the user level library
xel_udp_smsend_setup - Set up a UDP stream for sends
xel_udp_smsend_multi - Perform a UDP stream send
xel_udp_smsend_close - Close a UDP send stream
xel_udp_smrecv_setup - Set up a UDP stream for receives
xel_udp_smrecv_multi - Perform a UDP stream receive
xel_udp_smrecv_close - Close a UDP receive stream

Many of the API routines discussed here use the xe_buflist data structure to transfer data buffers between the
application and the driver. In the following sections we discuss this data structure and each of the API routines.

The API defines a xe_buflist data structure as the application data interface. It is shared by both the driver and
the application and is a container for transferring buffer information to and from the driver during send and
receive operations. The xe_buflist structure is quite flexible in the variety of streaming sends and receives it
supports . In simplest use, it merely points to a single large send/receive buffer, and defines the send/receive
datagram size. In more complex usage, an array of xe_buflist entries can point to multiple large buffers, or to a
sequence of individual datagram send/receive buffers.

Error Detection and Reporting

Timeouts - A timeout value can optionally be supplied when a multi-datagram receive operation is initiated. If
the timeout value is reached the receive operation will be terminated and a completion generated indicating
the amount of data, if any, that has been received.

Size Errors - Datagram sizes for each received datagram within a block can optionally be verified.

© 2014 Critical /0, LLC All Rights Reserved Revised 7/18/2014




Missing and Out of Order Data Errors - Datagram receive order can optionally be verified in many use cases.
The detection method relies on the IP Identification field to verify datagram receive order. As a result it is only
applicable to cases where the UDP data sender(s) supplies datagrams with a uniformly incrementing IP
Identification field. XGE UDP Direct stream sends will always have a uniformly incrementing ID field for reach
stream. If sending from a system using a generic NIC and/or network stack, this generally means that the
sender must not send any IP datagram traffic other than the UDP stream traffic. If sending from a hardware
device such as an FPGA, the FPGA hardware and software simply need to be designed to send datagrams with
the proper IP ID sequences.

Error Reporting — In the case of size errors, or missing or out-of-order data, detailed information can optionally
be supplied with each receive completion that indicates the location and size of any missing or out of order
data.

© 2014 Critical /0, LLC All Rights Reserved Revised 7/18/2014




