CRITICAL 1/0 WHITE PAPER

CRITICALIo

10GB/s Multi-Stream FPGA Data Recording

Using StoreEngine™ and StorePak XMC™ in Recording Mode

Abstract

The Critical 1/O StoreEngine/StorePak XMC combination provides ultra-high
performance data recording capabilities with a high degree of configurability and
scalability. This paper describes a demonstration recording configuration that
includes recording sensor data from four VPX FPGA boards connected to two
StoreEngine/StorePak XMC VPX boards, recording at a sustained aggregate rate of
10 GB/sec. The system also includes an optional controller SBC, connected to both
StoreEngine boards, which can be used to provide high level control of the recording
functionality. A proof of concept demonstration system was assembled and tested.
Benchmarking of this system verified that StoreEngine/StorePak XMC combination
can record at the required 10GB/s aggregate rate as well as playback recorded data
to the FPGAs at the same 10GB/s aggregate rate.

Revised 4/20/2021 © 2021 Critical 110 www.criticalio.com

1

StoreEngine and StorePak — Recorder Building Blocks

StoreEngine and StorePak are flexible storage building blocks that can be used to implement a wide
range of data storage systems. In the system described in this paper, StoreEngine functions as an ultra-
high performance VPX storage controller blade providing high performance recording functionality.
StoreEngine has an integrated Xeon-D storage management processor, along with 8GB to 16GB of DDR4
buffer memory with a bandwidth of 34GB/s to support high performance recording.

StoreEngine provides rich PCle connectivity, with four x4 PCle backplane ports per 3U VPX board. These
ports are used for connections to the recording data sources as well as for interconnections between
the StoreEngines (and external StorePak VPX blades, if used). StoreEngine also features a PCle switch
which is fully partitionable and supports NT bridging, providing greatly increased system PCle
architecture options.

StoreEngine can host a StorePak XMC that provides up to 12 TB of on-board SSD storage, all in a single
3U VPX slot. Together, StoreEngine and StorePak XMC provide unmatched storage capability, ultra-high
performance and high capacity within a very small size, weight, and power (SWaP) footprint.

ssD DDR4A DDR4

I
Xeon D CPU S =

Mm-wg‘m

m ™M N~ m m

B R R e sso

0!900-‘003' a

IR ATTS S g\VMe SSD)

1 | | |

23] | [T e

4 HE -

31 HE :

Labal T T bala :]

x8d + x12d

Figure 1. 3U CC StoreEngine + StorePak XMC Figure 2. Block Diagram of 3U StoreEngine + StorePak XMC
Section 1: StoreEngine/StorePak XMC Data Recorder Overview

StoreEngine is pre-loaded with highly configurable data recorder software that allows data streams from
multiple sources to be recorded to StorePaks (either XMC or 3U VPX blade) storage at ultra-high data
rates. The recorder software supports recording from multiple stream sources of multiple types.

Data flow and recording is completely managed by StoreEngine and stored as files using a specialized
low overhead file system. The recorded data can then be played back to the same devices, or to
different devices through either PCle or Ethernet connections.

Recording Source Stream Type Options

Stream sources are devices that source the data into memory buffers, which are then written to
StorePak SSD storage by StoreEngine recording software. The recording software supports a number of
stream source types, with dedicated recording mode software for each stream type. Stream source

Revised 4/20/2021 © 2021 Critical I/0 www.criticalio.com

2

options include Ethernet (UDP, TCP), sensors (FPGA, ADC, etc.), Fibre Channel, PCle connected SBCs, and
Local. Localis a unique stream type in that it is used for recording data from buffers hosted on the
StoreEngine, where the user has implemented their own alternate functionality to move the data into
these buffers. Depending on the source type, the data sources may be connected over the backplane
(PCle, 1/10 GbE) or through the use of interface XMCs (1/10/25 GbE, Fibre Channel).

This FPGA recording demonstration uses the FPGA stream type.
Recording Modes of Operation

The StoreEngine recording software supports two basic modes of operation: Buffered and Direct. The
key difference is where data buffers are located. For Buffered mode, data buffers are hosted on the
StoreEngine, and the source device “pushes” or writes data into these buffers. For Direct mode, the
data buffers are located on the data source device (i.e. the FPGA or ADC or SBC), and the StoreEngine (or
StorePak) “pulls” or reads data from these buffers. Each recording data stream type (FPGA, Ethernet,
etc.) may support direct and/or buffered mode, depending on the source type. Note however that
some recording source types support only one mode.

The demonstration system described later uses Buffered mode, where data is sent by the source devices
through the PCle backplane connections and is buffered in StoreEngine data buffers before being
written to StorePak SSDs.

Recording Control Options

There are three methods of controlling recording and playback. The first is a web-based interface which
is mainly used for configuration of the system but can also be used for run-time controls. The second,
(which has the same capabilities) is the Recorder Network Control Protocol which is a client/server-
based TCP socket interface. This control interface provides lower latency than the web-based method
and can be built into an application that runs on a customer device. The third uses the Recording Driver
hosted on a user’s System Controller SBC, which implements a control interface over a PCle link. The
first two methods can control any non-System Controller source. The System Controller interface can
control recording from the System Controller or from other sources connected to StoreEngine.

The table below contrasts the capabilities of these control options.

Control Type Network Recording Driver Web
PC stream control Limited Yes No
ADC stream control Yes Limited Yes
FPGA stream control Yes Limited Yes
UDP stream control Yes Yes Yes
TCP stream control Yes Yes Yes
EMU stream control Yes No Yes
Recorder/LUN/mode controls Yes Limited Yes

The System Controller is an optional PCle linked SBC running either Linux or VxWorks. If a System
Controller is used, a recorder driver is provided that is used to communicate with StoreEngine. Through
this driver, an application can control recording from the System Controller itself or from an external
source. As an intelligent device which is connected to StoreEngine and potentially to external sources,

Revised 4/20/2021 © 2021 Critical I/0 www.criticalio.com

3

the System Controller is positioned to manage all aspects of recording up to transferring data to/from
storage. In the case of recording data directly from the System Controller, the System Controller directs
the allocation of individual data recorder buffers and specifies when the data transfers to storage should
occur. For external source recording, the System Controller directs the StoreEngine to start and stop the
stream of data recorder buffers provided to the external source.

Recording File System

For all stream types, StoreEngine manages the recording of streams using user-defined constant-sized
blocks of data, and using a specialized file system. The file system has a simple hierarchy with files
organized into groups by LUN and channel. Each group of files is a file name space in which files are
numbered sequentially as they are created. For each recording, three files are generated. The first
contains the actual data blocks, the second contains file level metadata, and the third contains block
level metadata, including timestamps, for each recorded block. All three files are readable through a
standard file system interface which can be externally accessed using a network protocol (NFS, FTP or
CIFS/SMB). This provides a method for retrieving recorded data outside of the recording source path.

Section 2: FPGA Recording Demonstration System

The demonstration system described here requires both significant PCle connectivity as well as high
aggregate recording rates. The system includes two StoreEngines, each equipped with a StorePak XMC,
four FPGA boards, and a System Controller SBC. Each StoreEngine is connected to two FPGA boards and
records data from them at an aggregate rate of 5 GB/sec using two Gen3 x4 PCle interfaces. The System
Controller SBC is connected to both StoreEngines through separate PCle connections. It is used to
provide high level controls to the StoreEngines and may also be a destination for playback of recorded
data.

The StoreEngines and StorePak XMCs are Critical I/O products. Critical /0O also supplies the recording
software running on the StoreEngines and the recording driver for the System Controller (is used) to
facilitate communication with the StoreEngines. The FPGAs, System Controller and backplane are
normally customer-supplied.

The system performance requirement is an aggregate recording rate (10 GB/s). This was analytically
determined to be practical, and the principle goal of this recording demonstration was to demonstrate
that this recording rate could be reliably achieved in a real system, given the overheads and
inefficiencies of the real world.

Demonstration System Requirements Summary
The demonstration system has the following architecture and performance requirements:

1) The desired aggregate recording rate for each StoreEngine is 5 GB/sec for a system aggregate of
10 GB/sec. The desired aggregate playback rate is the same.

2) Each StoreEngine/StorePak XMC combo connects to two FPGAs for a total of four FPGAs. Each
connection is a PCle Gen3 x4 link.

3) The System Controller card connects to each of the StoreEngines using PCle backplane
connections. Each connection is a PCle Gen2 x4 link.

Revised 4/20/2021 © 2021 Critical I/0 www.criticalio.com

4

4) The System Controller is to be able to control recording on each StoreEngine over the PCle
connections. These are high level controls such as “start recording” and “stop recording”.

5) The System Controller is to be able to playback FPGA-recorded data from each StoreEngine over
the PCle connection at an aggregate rate of 1.5 GB/sec.

Demonstration System Architecture

Figure 3 shows the demonstration system architecture. Each block in figure 3 is a separate VPX board. A
single backplane connects all boards. Note that in this demonstration system, the StoreEngines operate
independently of each other. That is, each maintains its own set of files and responds directly to System
Controller commands. Note also that there is no direct communication between the two StoreEngines.
Each pair of FPGA boards is connected to the StoreEngines’ PCle Gen3 x4 ports. The optional System
Controller SBC communicates with both StoreEngines using two PCle G2 x4 ports.

System PCle G2 x4
Controller PCle G2 x4
Linux SBC

L 4

FPGA 1 PCle . StorePak XMC StorePak XMC . PCle FPGA 3

25GBfs |[G3x47|| 6TB,6GB/s 6TB, 6 GB/s " G3x4| 25GB/s
StoreEngine 1 StoreEngine 2

FPGA 2 PCle . DDR4 Buffer DDR4 Buffer _PCle FPGA 4

25GB/s [G3x4 34 GB/s 34 GB/s G3x4| 25GB/s

Figure 3: PCle connectivity of demonstration system

The backplane for a fielded system like this would likely be a custom design. For this demonstration
system, Meritec controlled impedance multi-lane backplane cables were used to connect the boards.

PCle Topology Issues

The port used to connect StoreEngine to the System Controller is configured as an NTB. Since a System
Controller will typically only have root ports an NTB is required so that the StoreEngine can be presented
to the System Controller as an endpoint. StoreEngine and the System Controller are then able to map
some or all of each other’s memory space into their own memory map. The memory mappings are done
partly by the OS and partly by the recording software.

The other two StoreEngine ports are PCle root ports and are connected to the FPGAs. The FPGAs thus
appear as endpoint devices to the StoreEngines. StoreEngine accesses device memory and registers
through these mappings. Each device can have up to three mapping windows, which can allow for
separation of functionality if desired.

FPGA Recording Top Level Data Flow

The top level data flow for the demonstration system is diagramed in figure 4. The FPGAs for the system
host a ring buffer of records that StoreEngine uses to submit a series of data transfer records to be used
in subsequent data transfers. Each record includes a buffer address, buffer size, direction of transfer, a

Revised 4/20/2021 © 2021 Critical I/0 www.criticalio.com

5

logical channel number, a transfer handle and a status field. When the FPGA is done with a buffer it sets
the status in the ring buffer record and notifies StoreEngine.

FPGA | gnd-point | aporpata,NR | [bps | intel| StoreEngine 1
1 port (PEQ) (PE-C) | Switch -
L - ! IDT Switch

| T ADDR, DATA, INTR || DS Intel ||[DS | nTB
FPGA End-point (PED) [H— e (PE-D) | Switch (PE-A) | (PE-B)
2 port _ t : y J
FPGA | £nd-point ; | oS ntel | StoreEngine 2

(PE-C) |+ =g PE-C) | Switch
3 post ADDR, fiis, [1DT switch CMD,
, DATA, INTR || 11, : ADDR,
' DS Intel DS NTB DATA,
FPGA | gng-point | g | (PE-D) | Switch | | (PE-A) | (PE-B) INTR
4 it (PE-D) [T~ ADDR, DATA, L 3 _

' INTR CMD, ADDR, DATA, INTR|

v

System ofr [os |1 [s
Controller Switch | (PE-A) | | (PE-B)

Figure 4. Top Level System Data Flow

FPGA PCle and DMA Interface - Detailed Description

This section provides some additional details of the StoreEngine to FPGA logical interface, including both
details of the FPGA hardware implementation, as well as a brief description of initialization and
recording data and control flow.

The main logical components of the FPGA interface are: 1) a buffer address queue (BAQ), 2) a DMA
engine to move received data to the data buffers, and 3) a method of interrupting StoreEngine when a
buffer has been filled with data. Each FPGA has its own PCle switch port, source buffers and DMA
engine. Recorder software writes buffer addresses to the buffer address queue (BAQ) in FPGA memory.
The FPGA fetches a buffer address from the BAQ and uses a local DMA to copy data from local source
buffers to StoreEngine data recorder buffers. The StoreEngine is then interrupted as buffers are filled, at
which point the StoreEngine schedules the buffers to be written to storage on the StorePak.

The StoreEngine to FPGA interface uses a single PCle mapping window, through which StoreEngine does
two things: 1) performs an initialization handshake to verify that the device is ready, and 2) writes data
transfer request records into a ring buffer.

The initialization handshake is designed to verify that the FPGA is ready. When the FPGA comes up, it
writes a token to a pre-defined offset in the mapping window that StoreEngine reads. StoreEngine then
writes a start command to FPGA memory. The FPGA responds by writing another token, this time to a
StoreEngine memory location, and interrupts StoreEngine. In the interrupt handler, StoreEngine verifies
the token in memory and if valid, marks the FPGA as ready to be used.

Revised 4/20/2021 © 2021 Critical I/0 www.criticalio.com

6

FPGA SE

PCle
Bridge

CMD, ADDR
OB

BAR2 | [>
DBell || e

SENSOR

|

CtrlRegs
BAQ |1
CMD [«

T
v

A 4

“INTR

Figure 5. FPGA Data Flow Diagram

The data transfer request record from the StoreEngine provides the FPGA with both the information
needed about a block transfer as well as the location for the FPGA to provide status when the transfer
has completed. The record includes the buffer address, buffer size, direction and logical channel
number. The buffer address and size define the PCle address range of the data buffer. Direction specifies
whether the operation is recording or playback. Logical channel number can be used to work on logically
separate streams of data, each of which uses a different set of files; this demonstration uses a single
channel. The record also includes fields for status and transfer length. The status indicates whether the
transfer completed successfully. The transfer length (which is only relevant for recording) indicates the
amount of data transferred into the data buffer; the FPGA does not need to fill the buffer completely. In
the event it does not, StoreEngine will write a partially filled block of data to storage, but the block will
still consume a full block of storage space. The amount of data in the block is tracked by StoreEngine
using block metadata records. When playback is performed, the block metadata is used to determine
how much data should be sent. The block metadata records also include the disk location, file position
and time stamp information.

Note that StoreEngine FPGA source type software has flexibility in the FPGA interface designs that it can
support; the interface used in the demonstration is only one possibility.

Note that for the demonstration system the FPGA hardware was actually emulated using SBCs running a
software module (SE-FPGA) that is designed to exactly emulate the hardware functionality of a true
FPGA. This software module first performs some basic interface initialization, then retrieves buffer
addresses provided by the StoreEngine, fills the buffers with test data using DMAs to StoreEngine, and
generates interrupts to the StoreEngine as the buffers are filled.

Recording Setup

The setup of the FPGA stream recording and playback functionality on the StoreEngine can be done
using the StoreEngine’s web based recorder management interface, an example of which is shown in
Figure 6. The basic configuration steps including creating recorder LUNs (the basic storage container),

Revised 4/20/2021 © 2021 Critical I/0 www.criticalio.com

7

defining the PCle topology, adding new recorder streams of the type FPGA, and then configuring those
streams.

ine’ 9 __ . SCALABLE
gtoreBnglle o sou snvE SoseE

Add FPGA Stream

- Jaured Strowr
mmi Type | LUN || Board o | w"‘f';* Made nm
1 Eb o WA z Buffered || Record
2 |[ousem [1 | NA 2 Buffered || Both
3 USeR_|[3 WA 1 Buffered | Record |
T [ew | WA i Buffered || Aecord |
3 ADC [A - 3 Buffered Playback
5 FreA [1 1 Direct [Playback
StorePaka-
7 PC o 3u 1 1 Durect [
Add Stream 1
(Number: 8, Type: FPGA). Sogn
LUN ar
Transter Made irect

Pefault direction Piayback ¥

Plumber of Channels i

Default Forwarding Stresm | [Nona

[Board GA connected to data || | +
saurce

PCle switch port connected |[pe 4 v
o dats source

[Data PCle BAR on data BARD *
urce

Control PCle BAR. on data
urce (ignored for buffer || BARD v
imode streams)

Figure 6. Example of StoreEngine Recorder Web Management Controls

Operation - Recording

StoreEngine recorder software first performs some basic initialization with the FPGAs to bring them
online and verify they are ready to operate. After initialization, the FPGAs can begin writing data into
StoreEngine hosted data buffers. The recorder software processes control commands received (such as
Start and Stop) via the Recorder Network Control (RNC) interface, and provides buffers to the FPGAs
through FPGA hosted buffer address queues. The FPGAs signal the StoreEngine when a buffer has been
filled. The recorder software then manages writing the data in these buffers to SSD storage that is
hosted on the StorePaks using the Critical I/O data recorder file system.

Operation - Playback

Playback of recorded data can be performed to either the FPGAs or the System Controller SBC. In each
case the System Controller can be used to control playback but the software operation is significantly
different.

Playback to FPGA

Playback operation to the FPGA is basically the reverse of recording operation. The main difference is
the direction of data flow. Instead of being provided empty buffers that are returned to StoreEngine and
written to storage, StoreEngine fills data recorder buffers by sequentially reading blocks of data from
the specified file in storage. As buffers are filled, StoreEngine queues them with the FPGA using the
same interface used for recording. The FPGA uses the direction field of the request record to determine
that the operation is a send. When the FPGA has sent the data in the buffer, StoreEngine is notified by

Revised 4/20/2021 © 2021 Critical I/0 www.criticalio.com

8

interrupt and the buffer is reclaimed to be used again. StoreEngine queues multiple buffers with the
FPGA so that there is always a data buffer available to be sent.

StoreEngine continues queuing buffers until a stop command is received or the end-of-file is reached.
The start and stop commands can come from any of the three control interfaces, including the System
Controller.

Playback to System Controller

Playback operation to the System Controller is controlled differently, through the System Controller
interface. This is because StoreEngine provides buffer addresses in response to buffer request
commands from the System Controller and, unlike the FPGA interface, there is no buffer address queue
to push addresses into. Data buffers are only filled as they are requested by the System Controller. The
completion of requests is asynchronous, so the System Controller can queue multiple requests for
better efficiency.

When StoreEngine receives a buffer request from the System Controller, it fetches an address from a
free buffer queue and schedules a read of the next block of the current file from storage. When the
buffer has been filled StoreEngine completes the buffer request command by providing the buffer
address and size in a command response to the System Controller. The System Controller then continues
to request buffers at its discretion. When the System Controller is done with the buffer it sends a buffer
complete command to StoreEngine with the buffer address.

Summary and System Performance Results

The StoreEngine / StorePak combination offers high PCle connectivity and high recording bandwidth
capabilities with up to 12TB of on board SSD storage. StoreEngine also features highly configurable high
performance Recording Mode software. A demonstration FPGA recording system was constructed,
tested, and benchmarked that consisted of two StoreEngine boards recording (and playing back) data
from four FPGA boards, using StoreEngine’s standard Recording Mode software.

Benchmarking results showed the two StoreEngines could reliably record and playback FPGA data at the
desired 10GB/s aggregate sustained rate.

Revised 4/20/2021 © 2021 Critical I/0 www.criticalio.com

9

