CRITICAL 1/0O WHITE PAPER

High-Performance RDMA using
Critical I/O XGE 25Gb Ethernet

Abstract

High performance embedded systems can leverage RDMA
(Remote Direct Memory Access) protocols to efficiently move
large amounts of data with minimal latency and CPU loading.
When combined with ultra-fast transport layers such as 25Gb
Ethernet, RDMA can provide unmatched networking performance
for embedded processing systems.

Revised 9/27/2021 1 CRITICAL Io

CRITICALno

High-Performance RDMA using Critical I/O XGE 25Gb Ethernet

Embedded processing systems face an increasing demand to move large amounts of data among
sensors and processing elements. Data rates and resolutions are constantly increasing, and these can
stress even the best network technologies. And processing elements have become more diverse,
including not only traditional CPUs and DSPs, but additional elements such as GPUs and FPGAs.

RDMA (Remote Direct Memory Access) protocols can be leveraged to move large amounts of data with
minimal latency and CPU loading. RDMA also supports movement of data directly to/from non-
traditional processing elements such as GPUs and FPGAs. And when combined with ultra-fast transport
layers such as 25Gb Ethernet, RDMA can provide unmatched networking performance for the
embedded system.

Introduction to RDMA and RoCE

RDMA is a long-used standard for the InfiniBand transport layer. When RDMA is instead used over a
normal Ethernet network, it is termed RDMA over Commodity Ethernet (RoCE) protocol (aka RDMA over
Converged Ethernet). Note that we will use the terms RDMA and RoCE interchangeably, both to
indicate the RDMA protocol running over an Ethernet transport layer.

Linux has extensive and mature built-in RoCE support because RoCE is widely used in HPC and large-
scale Data Center applications. Critical I/0O has implemented a VxWorks RoCE driver that delivers
exceptional RoCE performance, leveraging the full RoCE offload available in Critical I/O XGE hardware.

In this paper we discuss RDMA, RoCE, and the associated application to embedded systems. An
overview is provided of Critical I/0’s RoCE APl implementation for VxWorks, as well as the standard
Linux RDMA/RoCE implementation. And finally, we discuss RoCE performance, with measurements
performed using Critical I/O XGE 25Gb Ethernet hardware. These results show over 3 GByte/s of data
transfer performance per port (each direction), with a corresponding CPU utilization of less than 1% for
large data transfers, and node-to-node latencies as low as 3.5 usec for small messages.

Introduction to Critical 1/0 25Gb XGE Ethernet

Critical 1/0O’s XGE 25GbE XMC is a RoCE enabled Ethernet NIC with two 25GbE ports. The XGE hardware
fully offloads RoCE operations, with driver support available for both Linux and VxWorks. Critical I/O’s
XGE products also support and are fully compliant with existing standard Ethernet protocols and
infrastructure. The XGE hardware architecture features a combination of programmable stateless
offloads that are natively supported by O/S network stacks, while also offering full RoCE offloads.
Critical 1/Q’s software drivers for Linux and VxWorks support concurrent operation of all standard
Ethernet operations (TCP, UDP, etc.) with RoCE (as well as UDP Direct, an alternative high-performance
protocol described later in this paper).

Figure 1 shows a hypothetical system architecture using 25Gb Ethernet for communication between
several subsystems. In this example, the UDP Direct protocol is used for the 25GbE link connecting the
Sensor subsystem with the Pre-Processor subsystem, while the low-latency RDMA protocol is used on
the 25GbE link connecting the Pre-Processor subsystem with the processor subsystem.

Sensor Processor Subsystem
Subsystem PU .
€ | GpPUs
Sensor ==
S
byl RDMA
u;) 25GbE 3 GB/s, 3.5 usec latency
Sensor 1 .,
o]
ol | 256bE
LN PCle
N ubp FPGAs
Direct CPU
S _—
ensor 3 GB/S
Pre-processor Subsystem

Figure 1. Hypothetical System using 25Gb Ethernet for Subsystem Interconnects
XGE Stateless Offloads for Standard (non-RoCE) Network Traffic

In addition to RoCE offloads, XGE hardware provides protocol offloads for standard networking traffic.
For the transmit path, XGE products have hardware assisted checksum computation and Large Segment
Offload (LSO) to accelerate transmission of large blocks in data intensive applications. For the receive
path XGE products offer hardware assists of Large Receive Offload (LRO) and Flow Steering (FS). XGE
LRO aggregates incoming packets into larger buffers in hardware so that the CPU processes a fewer
number of buffers, thus reducing a CPU’s packet processing overhead. XGE flow steering de-multiplexes
packet flows in hardware, thus accelerating traditional receive processing by directly sending a flow to
the CPU core that is local to its interrupt, network, and application level processing. Flow steering
offload combined with interrupt and application affinity can provide for an improved data rate by
lowering the cost of any context switching and reducing cache misses.

RDMA/RoCE Operation

RoCE is designed for efficient data transfers directly between application-level memory buffers.
Applications perform RDMA operations such as READ/WRITE that allow direct access to memory
locations in each other’s address spaces. The RDMA offloads in RoCE enabled NICs translate these
operations into hardware DMAs of data directly to/from the desired locations. This combination of low
overhead RDMA instructions and offloaded processing of the incoming/outgoing data path provides for
highly efficient and low-latency communications.

Because RoCE transfers data directly between application-level memory buffers, it is also possible to
send and/or receive data directly from/to buffers that are not located in the host CPUs local memory,
for example, memory buffers located with a FPGA or GPU processing node. Traditionally, network data
transfers to/from these types of processing elements require first “staging” of data in host CPU memory.
With RoCE, host CPU memory staging can be completely bypassed, with data deposited directly where it
is needed, overcoming the staging inefficiency of the traditional transfer model.

RoCE supports multiple transport modes such as RDMA_UC (Unreliable Connection), RDMA_RC (Reliable
Connection) and RDMA_UD (Unreliable Datagram). The RC transport guarantees that a duplicate
message does not arrive at the destination and that messages arrive in order. RC Receivers make use of
ACK messages to acknowledge receipt of a message while a NACK is used for a retransmission from the
initiator side. Sending of ACK and NACKs is handled by the RDMA hardware offload.

RoCE - Topologies, Flow Control, and Switch Requirements

RoCE can be used between XGE NICs that are connected point-to-point, or in systems using either
standard Ethernet switches or enhanced Data Center Ethernet (DCE) switches. DCE switches provide
enhanced flow control and congestion management features which are especially useful when there is
an expectation of mixed traffic and/or significant network congestion.

In systems where significant network congestion is anticipated, a low loss network is important for best
RoCE performance. This means a network flow control method may be required. The default Ethernet
flow control method is the 802.3x pause mechanism, which can be used with RoCE nodes which are
connected either point-to-point or through Ethernet switches. When an 802.3x pause is asserted it is
applied to all traffic on the port, regardless of network traffic type. For improved flow-control
granularity, hardware based Priority Flow Control (PFC) and VLANs can be enabled to selectively pause
only certain network traffic flows. PFC is especially useful if the link is carrying a significant amount of
traditional network traffic in addition to RoCE traffic. And finally, DCE capable switches provide still
more features for better flow control and congestion management, including Explicit Congestion
Notification (ECN) in addition to PFC.

RoCE - Version 1 vs. Version 2

There are currently two versions of RoCE in use. RoCEv1 is a Layer 2 protocol and is designed for systems
where traffic flows within a single subnet. RoCEv2 is a more scalable extension to RoCEv1 that uses a
standard IP header, making it a Layer 3 protocol. This means that RoCEv2 traffic can be routed, and
thus RoCEv2 can scale to systems spanning multiple subnets. Figure 2 provides an overview of sample
interconnects for RoCEv1 and RoCEv2, along with possible flow control methods.

Although more applicable to large IP networks than to embedded systems, XGE also supports Resilient
RoCE (RRoCE), a variation of RoCEv2 designed for congested and lossy IP networks. The RoCEv2
specification provides for RoCE Congestion Management (RCM), where the transmission rate is reduced
in response to congestion. RRoCE congestion control is NIC hardware based which reduces the latency
of the congestion control loop. This allows RRoCE to respond quickly to reduce packet losses while also
making use of the fast hardware retransmission logic in the recovery phase. RRoCE requires a switch to
support ECN and an Active Queue Management method to detect congestion in switch queues.

RoCEv1l Connection Lossless Link Level Flow Control
(Layer 2) Global Pause | Priority Flow Control (Global Pause OFF)
Point-to-point ON PFC on HCAs, VLAN, VLAN Egress Mapping
DCE Switch Host | Switch | Manual Auto (Remote)
ON ON Host Switch | Host Switch
PFC, VLAN. VLAN PFC, VLAN. LLDP, VLAN, PFC,
Egress Mapping VLAN DCBX, VLAN ETS, LLDP,
(Layer 2 PCP Egress DCBX
mapping) Mapping
(Layer 2 PCP
mapping)
Standard Switch | ON ON N/A N/A
RoCEv2 Fabric Connection Global Pause | Priority Flow Control (Global Pause ECN
(Layer 3) (802.3x) OFF)
Lossless | Point-to-point | ON PFC, PFC to Layer 3 DSCP Mapping optional
DCE Switch Host ON Host PFC, PFC to Layer 3 DSCP optional
Mapping, DCBX, LLDP
Switch | ON Switch | PFC, LLDP, DCBX optional
Std. Switch Host ON N/A optional
Switch | ON optional

Figure 2. RoCEvl vs RoCEv2 Interconnect Options

RoCE - Implementation and Usage for VxWorks Based Systems

Critical /0 has developed a VxWorks END driver for XGE NICs that allows concurrent operation of RoCE
functionality along with standard network functionality (TCP, UDP, etc.). The RoCE API layer
implemented for the driver contains a subset of the InfiniBand Verbs API (libibverbs) routines that
VxWorks RoCE applications can use for efficient access of the XGE RoCE offload. The API routines
exported by the END driver have a ‘xe_ibv’ prefix in their names but are semantically based on the
corresponding libibverbs routines found in the Linux implementation. Figure 3 shows the VxWorks
RoCE API routines and their Linux libibverbs counterparts.

RoCE - Implementation and Usage for Linux Based Systems

The Linux XGE RDMA driver permits concurrent operation of traditional networking and RDMA
interfaces of the XGE interface. Linux has rich in-built support for RoCE within the Kernel. However, for
applications to make use of this kernel support for RDMA, certain user libraries that are a part of the
linux-rdma’s rdma-core project are also needed. The libibverbs library provides standard IB Verbs (IBV)
API (ibv_xxx) while RDMA specific API (rdma_xxx), routines are in the librdmacm library.

API Category VxWorks RoCE API Libibverbs/Linux API

vctx = xe_ibv_open_device(“xge@”)

Device Access

Framework Object Creation

Framework Object Modification

Query Framework Objects

Address Routines

Work Queue Access

Service

Framework Object Housekeeping

RoCE Performance Measurements for Linux and VxWorks

xe_ibv_close_device(vctx)
vpd = xe_ibv_alloc_pd(vctx)
vmr = xe_ibv_reg_mr(vpd, ..)

veq = xe_ibv_create_cq(vctx,

vgp = xe_ibv_create_gp(vpd,
vmr = xe_ibv_exp_reg mr(in)
xe_ibv_modify_gp(vgp,..)
xe_ibv req notify cq(vcq)

xe_ibv_resize_cq(vcq)

xe_ibv_query_gp(vgp,..)
xe_ibv_get_port_info(vctx,..)
xe_ibv_gquery_gid(vctx,..)
xe_gid_to_wire_gid(gid,..)
xe_wire_gid to_gid(gid,..)
xe_ibv_post_recv(vgp,vur,..)
xe_ibv_post_send(vqp,wwr, ..)
xe_ibv_poll_cq(vcq,..)
xe_ibv_destroy gp(vgp)
xe_ibv_destroy_cq(veq)
xe_ibv_dereg_mr(vmr)

xe_ibv_dealloc_pd(vpd)

2

)

vctx = ibv_open_devie(ib_dev_no)
ibv_close_device(vctx)

vpd = ibv_alloc_pd(vctx)

vmr = ibv_reg_mr(vpd, ..)

veq = ibv_create_cq(vctx, ..)

vgp = ibv_create_gp(vpd, ..)
vmr = ibv_exp_reg_mr(in)
ibv_modify_gp(vgp,..)
ibv_req _notify cq(cq)

ibv_resize_cq(vcq)

ibv_query_qp(vgp,)
ibv_get_port_info(vctx,..)
ibv_query_gid(vctx,..)
gid_to_wire_gid(gid,..)
wire_gid_to_gid(gid,..)
ibv_post_recv(vgp,vwr,..)
ibv_post_send(vgp,vwr, ..)
ibv_poll_cq(vcq,..)
ibv_destroy_gp(vap)
ibv_destroy_cq(veq)
ibv_dereg_mr(vmr)

ibv_dealloc_pd(vpd)

Figure 3. VxWorks and Linux RoCE/RDMA APIs

The charts in this section show RoCE performance results obtained using XGE 25Gb Ethernet XMCs, for
both Linux and VxWorks. For each OS, three characteristics are measured for a variety of send/receive
block sizes: Transfer Rate, CPU Utilization, and Round Trip Latency (transfer time).

The RoCE results show data transfer rates of over 3 GByte/s with CPU utilization of less than 1% for large
block transfers, and message round trip latencies as low as 7 microseconds. The charts below also
compare the RoCE performance with the performance obtained with standard TCP socket
communications on the same platforms.

The performance tests are between two nodes, each with an Intel Xeon E3-1225, 4-core processor
operating at 3.3 GHz, and a 25GbE XGE interface. The two nodes are connected point-to-point (without
a switch). For Linux tests both nodes used Fedora Core 27, while for VxWorks tests the “measured”
node used VxWorks 7.0. RoCE on VxWorks used Critical I/0’s RoCE API/driver, while the Linux side used
the standard IBV API/driver. All performance tests have used RDMA’s Reliable Connection transport
(RDMA_RC). Corresponding Linux TCP performance numbers were obtained using Netperf.

For RoCE Round Trip Latency measurement, we used the RDMA_RC_WRITE_WITH_IMM opcode, so that
the latency measurement includes target notification and completion processing delays.

Rate (MBps)

Round Trip Latency (usec

VxWorks Initiator/Sender Performance Metrics Linux Initiator/Sender Performance Metrics

RDMA RC_WRITE_WITH_IMM vs. Standard TCP RDMA RC_WRITE_WITH_IMM vs. Standard TCP
3500 50 3500 50
45
3000 . 45 3000
40 —o— a0
§ WRDMACPU . w & = RDMA CPU
2500 35 < Utilization = — Sl Utilization
c w
(=}
2000 30 .2 mmTcPCPU @ 2000 30 2 mmmTCP CPU
25 3 Utilization | = = Utilization
1500 = 2 1500 a0 5
20 5 _o_RDMARate & 5 —e—RDMA Rate
1000 15 2 = 1000 15 g
o 10
10 ——TCP Tx Rate 500 ——TCP Tx Rate
500 s I I I 5
0 N ; 111
> D O > @ AP0 A > P A
' S 0 v > © Vv D © Vv H O 9 > © X Q gl o) A
AN LGRS S P LRSI M\ MR SR RN g, R)
SR A gt AR A PG
Transfer Size (Bytes) Transfer Size (Bytes)
VxWorks Round Trip Latency Linux Round Trip Latency
RDMA_RC WRITE_WITH_IMM vs. Standard TCP RDMA_RC WRITE_WITH_IMM vs. Standard TCP
120 120
110 110
100 < 100
90 § 90
80 —e—RDMA RT = 80 —e—RDMA RT
70 Latency 2 70 Latency
[
60 2 60
50 —a— TCPRT = 50 —a—TCP RT
40 Latency = 40 Latency
30 2 30
20 / n:°: 20 /
10 10
0 0
1024 2048 4096 8192 16384 1024 2048 4096 8192 16384
Transfer Size (Bytes) Transfer Size (Bytes)

XGE UDP Direct — An Alternative to RDMA/RoCE

Though RoCE based solutions provide outstanding performance, RoCE operation does require RoCE
capable NICs at both endpoints of the connection. There are clearly situations where one endpoint may
not be RoCE capable. For these situations Critical /O XGE products support an alternative to RoCE that
is based on standard UDP, called UDP Direct.

UDP Direct is a high efficiency networking API/protocol implementation that builds on standard UDP and
coexists and operates concurrently alongside other standard O/S networking protocols. By using the
UDP Direct API, applications can send/receive large blocks of UDP datagrams by performing DMAs of
data directly from/to application memory buffers, completely bypassing all O/S network stack
overheads. And, similar to RoCE, these application buffers can be located anywhere in PCle address
space; they are not required to be in the local memory of the CPU that is managing the UDP Direct
transfers. This capability can be leveraged in moving data directly in or out of specialized processing
elements such as GPUs or FPGAs, with only minimal host CPU involvement.

Summary

The RDMA protocol, running over an Ethernet transport (RoCE), delivers high data rates with extremely
low CPU overhead by leveraging RoCE hardware offloads, managed through efficient direct access APIs.
The XGE 25GbE offers excellent RoCE performance numbers, with send/receive data rates of over 3 GB/s
per port, with a CPU utilization of less than 1% for large transfers. As RoCE is widely used in HPC and

large-scale Data Center applications, there is extensive and mature built-in RoCE support for Linux.
Critical 1/0 has implemented a VxWorks RoCE driver that delivers exceptional RoCE performance,
leveraging the full RoCE offload in Critical I/O XGE hardware. For applications where an endpoint may
not be RoCE capable, Critical I/O also provides a UDP Direct API/protocol that allows RoCE-like
performance even when interfacing with Ethernet nodes that do not support RoCE.

